Difference between revisions of "Instruction:4afd5ea7-0308-4e80-9dfc-6b66daf2ac81"

From The Embassy of Good Science
Line 39: Line 39:
  
 
The highest level in Bloom’s Taxonomy involves evaluating existing knowledge and creating new knowledge. All researchers play a critical role in shaping the direction of research and innovation. They are responsible for assessing the validity and significance of research findings and identifying areas for further investigation and innovation. By synthesising existing knowledge and developing new ideas, theories or methods, researchers develop their field forward and inspire the next generation of researchers and innovators. All RE/RI training should include components, which encourage learners to extend their thinking to evaluation and creation. In practice, this involves having such a robust knowledge base and values so that even when encountering new ethical dilemmas or being posed with a novel potentially integrity-threatening situation, they can rely on having the ‘tools’ to handle the situation.
 
The highest level in Bloom’s Taxonomy involves evaluating existing knowledge and creating new knowledge. All researchers play a critical role in shaping the direction of research and innovation. They are responsible for assessing the validity and significance of research findings and identifying areas for further investigation and innovation. By synthesising existing knowledge and developing new ideas, theories or methods, researchers develop their field forward and inspire the next generation of researchers and innovators. All RE/RI training should include components, which encourage learners to extend their thinking to evaluation and creation. In practice, this involves having such a robust knowledge base and values so that even when encountering new ethical dilemmas or being posed with a novel potentially integrity-threatening situation, they can rely on having the ‘tools’ to handle the situation.
 +
}}
 +
{{Instruction Step Trainee
 +
|Instruction Step Title=Use the SOLO taxonomy
 +
|Instruction Step Text=Besides using the Bloom’ Taxonomy to define learning objectives, the [https://www.johnbiggs.com.au/academic/solo-taxonomy/ SOLO Taxonomy] can be used (Biggs, 1999; Biggs & Tang, 2007). The Structure of the Observed Learning Outcome, or SOLO, is a way to set the learning outcomes according to their complexity.  (Biggs, 1999; Biggs & Tang, 2007).how complicated they are. This allows us to evaluate students' work based on its quality rather than how many pieces following the idea of this and that they got correctly.increasing understanding of complexities: Initially, we learn one or a few aspects of the task (unistructural), then multiple aspects that are unrelated to each other (multistructural), then we learn how to integrate them into a whole (relational), and lastly, we can generalise that whole to still-untaught applications (extended abstract).
 +
 +
[[File:SOLOTaxonomy.png]]
 +
 +
Fig 32. SOLO taxonomy (taken from Tammeleht & Löfström, 2023)
 
}}
 
}}
 
{{Instruction Remarks Trainee}}
 
{{Instruction Remarks Trainee}}

Revision as of 13:56, 5 December 2024

Using Different Learning Taxonomies

Instructions for:TraineeTrainer
Related Initiative
Goal
This module discusses the importance of defining learning objectives, and introduces several taxonomies that can be used in the creation of effective and impactful learning objectives.
Duration (hours)
2
For whom is this important?
Part of
BEYOND.png
BEYOND
Steps

What is this about?

Defining learning objectives serves as a cornerstone for creating successful and impactful learning environments. Rather than simply ticking a box, Learning objectives, that is what is it plays a critical role in several key aspects that the learners should learn by taking part in the training, guides the choice of the learning process.content, activities and assessment. Learning objectives can be defined by using different taxonomies. Bloom's taxonomy  categorizes educational goals into a hierarchical model, from simple recall of facts to complex evaluation and creation tasks. The SOLO (Structure of Observed Learning Outcomes) taxonomy, on the other hand, describes levels of increasing complexity in a learner's understanding of subjects, ranging from unistructural to extended abstract levels.

Learning is what the learner does, but it can be facilitated through what trainers do and of appropriate teaching activities (Biggs, 1999). The Taxonomy of Significant Learning (Fink, 2013) (sometimes also referred as the Fink’s taxonomy) is not hierarchical in the same way as the other two, however, it builds on Blooms’ taxonomy by including a long-forgotten affective component into the discussion (, namely caring).. It encourages to include into the learning outcomes the objectives foundational knowledge, application, integration, a human dimension, caring, and learning to learn competencies (Fink, 2013) and this way offers a holistic approach to learning. However, since the existing material aligns with Bloom's and SOLO frameworks, this guide will primarily describe these two to ensure coherence and consistency in training delivery. Nevertheless, we encourage trainers to also consider the more effective type of learning objectives proposed in the Taxonomy of Significant Learning.
1
Use the Bloom’s taxonomy

Bloom's Taxonomy is a well-known educational framework that offers a methodical way to classify learning objectives according to cognitive difficulty. (e.g., Adams, 2015). Bloom's taxonomy is a hierarchical framework that uses cognitive complexity to classify learning objectives. Benjamin Bloom created it in the 1950s, and it is now a vital instrument in educational theory and practice. The taxonomy is divided into six stages: remembering, understanding, applying, analysing, evaluating, and creating. The levels are arranged from lower to higher order cognitive skills. Fundamentally, remembering entails recollecting words, information, and fundamental ideas. Understanding is more than just remembering concepts; it also involves understanding meanings. Applying necessitates applying knowledge to novel contexts or problem-solving. Analysing means dissecting data into its constituent elements and identifying connections between them. Making decisions based on standards and criteria is the process of evaluating. Creating, in the end, involves coming up with original concepts and/or interpretations. The goal of applying Bloom's Taxonomy to training aims and results is to enhance comprehension by considering the knowledge, skills, and competencies that the specific training programmes were created to impart. The Remembering, Understanding, Applying, Analysing, Evaluating, and Creating domains of Bloom's Taxonomy each reflect a different cognitive process and the depth and complexity of learning.


BloomsTaxonomy.jpg

Fig 21. Bloom’s Taxonomy (taken from the Centre for teaching, Vanderbilt University. https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/)

All taxonomic levels are relevant irrespective of the study or career level. However, the taxonomic levels may mean different things for different individuals. For example, application of knowledge may mean engaging with research designs, but senior researchers often use more complex designs than students still learning how to do research. Nevertheless, it is essential that the learning extends beyond remembering and understanding, and that the complexity of activities at all levels gradually grow as the individual gains experience, knowledge and confidence.

Remembering and understanding:

Here, the focus is on memorising key facts, concepts and theories relevant to the field of research and innovation. Understanding these foundational elements is critical to moving forward. For example, undergraduate students need to master the basic principles and terminology related to ethics and integrity to effectively navigate through more complex topics later. Similarly, individuals pursuing a PhD or who are new to academia need a solid understanding of basic concepts before they can conduct more in-depth analyses and applications., such as mastering the ethics of their own PhD research. Moreover, senior researchers may need to understand the basic concept of supervision and mentoring practices when it comes to supervising a team and PhD candidates.


Apply and analyse:

Learning should always be an active endeavour irrespective of career or studies applying and analysing knowledge. This is where the emphasis shifts to practical application and critical thinking. Early career researchers, junior professors and academics need competencies for applying the ethics and integrity concepts they have learnt to real-life scenarios in connection to conducting experiments, collecting data and critically analysing the results to gain meaningful insights. Through these activities, participants develop the skills necessary to contribute to the advancement of their field and address research questions with greater depth and sophistication. In terms of research ethics and integrity, this involves applying such knowledge and values to every step of the research.


Evaluate and Create:


The highest level in Bloom’s Taxonomy involves evaluating existing knowledge and creating new knowledge. All researchers play a critical role in shaping the direction of research and innovation. They are responsible for assessing the validity and significance of research findings and identifying areas for further investigation and innovation. By synthesising existing knowledge and developing new ideas, theories or methods, researchers develop their field forward and inspire the next generation of researchers and innovators. All RE/RI training should include components, which encourage learners to extend their thinking to evaluation and creation. In practice, this involves having such a robust knowledge base and values so that even when encountering new ethical dilemmas or being posed with a novel potentially integrity-threatening situation, they can rely on having the ‘tools’ to handle the situation.

2
Use the SOLO taxonomy

Besides using the Bloom’ Taxonomy to define learning objectives, the SOLO Taxonomy can be used (Biggs, 1999; Biggs & Tang, 2007). The Structure of the Observed Learning Outcome, or SOLO, is a way to set the learning outcomes according to their complexity.  (Biggs, 1999; Biggs & Tang, 2007).how complicated they are. This allows us to evaluate students' work based on its quality rather than how many pieces following the idea of this and that they got correctly.increasing understanding of complexities: Initially, we learn one or a few aspects of the task (unistructural), then multiple aspects that are unrelated to each other (multistructural), then we learn how to integrate them into a whole (relational), and lastly, we can generalise that whole to still-untaught applications (extended abstract).

File:SOLOTaxonomy.png

Fig 32. SOLO taxonomy (taken from Tammeleht & Löfström, 2023)

Other information

Cookies help us deliver our services. By using our services, you agree to our use of cookies.
5.1.6